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Abstract

In this survey, we explain a few key ideas of the theory of graphs,
and how these ideas have grown to form the foundation of entire re-
search areas. Graph Theory is a fairly young mathematical discipline;
here we explain some of its major challenges for the 21st century.

László Lovász was recently awarded the Abel Prize. He made im-
portant contributions to all the areas discussed in this survey, and we
close by summarising his main achievements.

1 What is a graph?

A graph consists of a set of vertices together with a set of edges such
that each edge is incident with exactly two vertices. These two incident
vertices are called the endvertices of that edge. Sometimes, it will be
convenient to allow these two endvertices to be the same or to allow
edges with the same pair of endvertices. For now, however, we restrict
our attention to graphs where this does not happen. Topologically
speaking, a graph is simply a 1-dimensional simplicial complex.

Figure 1: The graph on the left is isomorphic to the graph on the right.

Two graphs are considered the same; that is, they are isomorphic,
if there are bijections between their vertex sets and edge sets that
commute with their incidence relations, see Figure 1.
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While road networks, and various networks associated to the in-
ternet give immediate examples of graphs, see Figure 2, here is an
example how graphs are used in another area of mathematics. Given
a presented group, the vertex set of its Cayley graph is the set of el-
ements of the group, and we join two elements a and b by an edge if
there is a nontrivial element s in the generating set such that a · s = b.
Many highly symmetric graphs are Cayley graphs of groups. For ex-
ample the cube is a Cayley graph of the dihedral group D4, whereas
the Petersen graph depicted in Figure 1 is not the Cayley graph of any
group. Of particular interest are properties of Cayley graphs that are
invariant under changing the presentation, and thus they are proper-
ties of the underlying groups; for example ends of groups in the sense
of Freudenthal [30]. The structure of ends in groups can be studied
through graphs using Bass-Serre Theory1 [84, 88].

Figure 2: Graphs are used to model road networks (left) and networks asso-
ciated to the internet (right), (Images from Wikipedia, the right picture is
an An Opte Project visualization of routing paths through a portion of the
Internet).

2 An Introduction to Graph Theory

Many questions in graph theory arise from studying the structure of
natural classes of graphs. There are different approaches to deriving
solutions to such questions. Over the years these approaches have
been refined into a profound tool box of methods; and often graph
theory is thought of as being composed of the subfields that emerged
out of these approaches. In what follows I will introduce some of the

1Bass-Serre theory is a subfield of combinatorial group theory that deals with analysing
groups acting by automorphisms on trees. Tools in this area allow us to detect free
products with amalgamation or HHN-extensions.
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basic questions of graph theory, and explain how its subfields arose by
providing answers to these questions.

Extremal Graph Theory. A natural ordering on graphs is the
‘subgraph relation’; here we say that a graph H is a subgraph of a graph
G if H can be obtained from G by deleting edges and deleting isolated
vertices – that is, vertices not incident with any edges. Given a natural
number r, the class of graphs with r vertices has a unique maximal
graph with respect to the subgraph relation (up to isomorphism). This
graph has edges between all

(
r
2

)
pairs of vertices; it is referred to as

the complete graph on r vertices, denoted by Kr. It is natural to
ask: which graphs contain the complete graph Kr as a subgraph? Or
restating it through the complementary class: what is the structure
of the class of graphs that do not have Kr as a subgraph? While this
class of graphs seems to be pretty wild and a complete characterisation
of the class may well be elusive, in 1941 Turán provided the following
partial answer (extending an earlier observation of Mantel from 1907).

Consider a graph G formed by r − 1 classes of vertices such that
two vertices are adjacent if and only if they are in different classes
(Here two vertices are adjacent if they are joined by an edge), see
Figure 3. Clearly the graph G does not have the complete graph Kr

as a subgraph. We say that G is a Turán-graph if any two of its
r − 1 classes of vertices differ in size by at most one. Note that up to
isomorphism, there is only one Turán-graph on a fixed number n > r
of vertices. In 1941 Turán proved that any graph on n > r vertices
that does not have the complete graph Kr as a subgraph and has as
many edges as possible must be isomorphic to the Turán-graph on n
vertices.

Figure 3: The Turán graph for r = 4 on 10 vertices.

Turán’s theorem is the foundational example for the approach of
Extremal Graph Theory. A key tool in extremal graph theory is Sze-
merédi’s regularity lemma. This says that the vertex set of every large-
enough graph G can be partitioned into few subsets so that the edges
of G between almost all of these subsets are distributed ‘regularly’: as
one would expect it if they were picked at random, given the actual
density of the edges of G between those two sets of vertices. Due to
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this inherent randomness, results in extremal graph theory that rely on
the regularity lemma in their proof are often only asymptotic and ap-
proximate; that is, they are only valid for graphs on sufficiently many
vertices and quantify by how many edges those graphs differ from a
list of constructions.

To summarise, in extremal graph theory we aim to draw structural
conclusions (such as the existence of a Kr subgraph) from merely quan-
titative assumptions (such as having more edges on n vertices than the
Turán-graph does). Many of its methods are closely related to proba-
bility theory.

Structural Graph Theory. In the early days of graph theory, an
influential problem was the 4-Colour Conjecture. Informally speaking,
it says that the countries on any map can be coloured with at most
four colours so that adjacent countries receive different colours, see
Figure 4.

Figure 4: A colouring of the countries of the world with just four different
colours (Source: Wikipedia).

This problem can be modelled by a graph. Just assign a vertex
to each country and join two of these vertices by an edge if their cor-
responding countries share a border. This graph has the property
that it is planar ; that is, its geometric realisation (the associated 1-
dimensional simplicial complex) can be injectively and continuously
embedded in the two-dimensional plane, see Figure 5. Hence the for-
mal statement of the 4-Colour Theorem is that the vertex set of any
planar graph can be partitioned into four classes so that no edge has
both its endvertices in the same class. In 1976, well over a hundred
years after it had been proposed, the 4-Colour Theorem was proved
by Appel and Haken. Next to Haken’s foundational contributions to
computational topology, in particular the theory of normal surfaces,
the 4-Colour Theorem is regarded as one of his main achievements. As
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for Hales’ proof of Kepler’s Conjecture, so far we only know computer-
assisted proofs of the 4-Colour Theorem, which may be unexpected
given the statement of the 4-Colour Theorem.

Figure 5: A planar graph with an embedding.

Possibly motivated by the 4-Colour Conjecture, in the 1930s math-
ematicians like Kuratowski, Wagner and Whitney initiated the system-
atic study of the class of planar graphs. As we shall see, these inves-
tigations eventually led to the development of Graph Minor Theory,
which nowadays is considered as far more important than the 4-Colour
Theorem itself, the intriguing puzzle with which all these developments
started.

In the above definition of ‘planar graphs’ we might as well have
defined them slightly differently, requiring that the embedding of the
edges is not only continuous but differentiable, or piece-wise linear, or
even that the edges are embedded as straight lines. In 1943 Koebe
proved that all these notions of embeddability are equivalent (for finite
graphs, for infinite graphs see [42]) by proving that they are equivalent
to an even stronger notion of embeddability. After being forgotten due
to the horrible catastrophy of World War Two, this theorem was re-
discovered independently by Andreev and Thurston and subsequently
it was shown by Rodin and Sullivan in 1987 that this theorem can be
applied in differential geometry to obtain a short combinatorial proof
of the Riemannian Mapping Theorem [78], see also [43]. To summarise,
there are many potential definitions of planar graphs, and it has been
shown that they are all equivalent (for finite graphs), leading to a single
class of planar graphs.

Making use of Euler’s Polyhedra Formula, it is an easy exercise to
show that the complete graph K5 is not planar. Similarly, the complete
bipartite graph K3,3, see Figure 6, is not planar.

Since subgraphs of planar graphs are planar, it may be tempting
to try to characterise the class of planar graphs by making a list of all
the minimally non-planar graphs: those non-planar graphs all whose
proper subgraphs are planar. Unfortunately, the list of these graphs
is far too complicated. From a structural perspective, the reason for
this is that the subgraph relation is not closed under planar duality
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Figure 6: The graphs K5 (on the left) and K3,3 (on the right).

in the following sense: start with a graph G embedded in the plane,
take its planar dual, delete an edge, and take the planar dual again.
The resulting graph is always planar but need not be a subgraph of
the graph G we started with, see Figure 7.

e

Figure 7: The graph G is the black graph on the left. Its plane dual is
depicted in grey in the same figure. The grey graph on the right is obtained
from the grey graph on the left by deleting the edge e. The black graph
on the right is dual of the grey graph on the right. However, it is not a
subgraph of the graph G we started with.

In 1933, Wagner introduced the ‘minor relation’ as a refinement
of the subgraph relation that solved the above problem resulting from
the deficit of the subgraph relation that it does not ‘behave well with
planar duality’, as follows. A minor of a graph is obtained by delet-
ing edges and contracting connected2 edge sets to single vertices, see
Figure 8. Minors of graphs may have multiple edges between a pair of
vertices and may have edges whose two endvertices are the same; this
slight extension of the class of graphs is referred to as the class of multi-
graphs3. The difference between graphs and multigraphs is mostly of
a technical nature and with slight abuse of notation we shall not dis-
tinguish between the two in this survey; we shall always use the term
‘graph’ although sometimes the objects can actually be multigraphs.

2An edge set is connected if any two of their endvertices can be joined by a path.
3In Graph Minor Theory, the term ‘graph’ is used for ‘multigraphs’, while ‘graphs’ as

we defined them here are referred to as ‘simple graphs’.
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con.

con.

con.

Figure 8: The minor of the graph on the left obtained by deleting the red
edges and contracting the blue edges is depicted on the right.

For planar graphs, the minor relation is obtained from the subgraph
relation by closing it under planar duality (Figure 9), but note that
the minors are defined combinatorially for arbitrary graphs.

G G∗

H H∗

delete contract

Figure 9: Contracting an edge in a planar graph is the same operation as
dualising, deleting that edge in the dual, and then dualising back; in other
words the diagram in this figures commutes. See Figure 7 for an example
for contraction of an edge.

Planarity of graphs can be characterised through the minor relation:
a graph is planar if and only if it does not have K5 or K3,3 as a minor.
With a slightly different notation, this was first proved by Kuratowski
[51], and it is referred to as ‘Kuratowski’s Theorem’. This theorem is
an example of what Edmonds calls a good characterisation4. Given a
graph, if it is planar, then there is a simple certificate for it: just give
the drawing. If it is not planar, by Kuratowski’s theorem, there is also
a simple certificate for it: it must have one of the two graphs K5 or
K3,3 as a minor.

In addition to the class of planar graphs, there are quite a few other
natural classes of graphs that are closed under the minor relation, for
example the class of graphs embeddable in any fixed surface. Graph
Minor Theory, initiated through the works of Kuratowski and Wagner
in the 1930s, investigates the minor relation on general graphs.

A far-reaching generalisation of Kuratowski’s Theorem is the Robertson-
Seymour Theorem. This theorem is concerned with general classes of

4Formally, a problem has a good characterisation if it is in the complexity class NP ∩
co-NP [23, 55, 96].
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graphs closed under taking minors. Each such class is characterised by
its excluded minors, the minor-minimal graphs outside it. This the-
orem says that for any minor-closed class its list of excluded minors
must be finite. While the proof easily spans over 500 pages, at the core
of the proof of this theorem is the Graph Minor Structure Theorem,
which in a sense gives a topological construction rule for any minor-
closed class, establishing a deep connection between graph theory and
topology.

To summarise, in Structural Graph Theory we aim to relate struc-
tural graph properties to one another, such as embeddability in a sur-
face or the existence of certain minors. Often, results in this area are
related to other areas of mathematics, such as topology, geometry or
algebra, or to the design of efficient algorithms.

What is the difference between Extremal Graph Theory
and Structural Graph Theory? There are many results in the
intersection of these areas. In Extremal Graph Theory, theorems typ-
ically relate a numerical graph invariant, such as the number of edges,
to a structural one, or even take the form of an inequality between
two numerical graph invariants. Results are relatively easy to compare
through these estimates. Typical methods, such as Szemerédi’s regu-
larity lemma, are sometimes not even referred to as ‘theorems’, and
often applying these methods requires a fair amount of computation
and estimating.

In Structural Graph Theory, theorems typically establish a con-
nection between two structural graph properties; such results are then
used directly to prove further results, forming a diverse landscape of
interconnected theorems.

Both approaches have their advantages, and it depends on the type
of problem you are trying to solve which is more suitable.

3 Highlights in Extremal Graph Theory

Ramsey Theory. Today, with data science emerging rapidly as
a new discipline of science, it is time to refine our mathematical un-
derstanding of what types of structure occur necessarily in any large-
enough sample.

In 1930, Ramsey proved that for every natural number r there is a
number n – much larger than r – such that every graph with at least
n vertices either contains the complete graph Kr or its complement,
which consists of r vertices with no edges in between [72].

Ramsey’s theorem is the first of its kind, in fact it finds certain
pre-determined substructures in all large-enough graphs. In addition
to numerous applications within combinatorics, extensions of Ramsey’s
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theorem to infinite sets provide tools in set theory, and there is a close
connection between Ramsey’s theorem and Van der Waerden numbers
for arithmetic progressions in number theory. Natural variants of Ram-
sey’s Theorem suggest themselves and have been studied a lot in the
past century, and are usually subsumed to form the field of ‘Ramsey
Theory’.

While Ramsey’s theorem as such is not too difficult to prove, the
quantitative behaviour of this phenomenon seems to be particularly
difficult to handle; more about this in a moment. Given r, the Ramsey
number is the smallest number n such that every graph on n vertices
contains a Kr or its complement, see Figure 10. The Ramsey number
is denoted by R(r). The observation that Ramsey numbers, even for
pretty small values of r, are difficult to compute was popularised by
Paul Erdős [87].

Figure 10: The 5-cycle is isomorphic to its complement and does not contain
a complete graph K3. Hence the Ramsey number R(3) is at least 6; and it
is indeed an easy exercise to check that the complete graph K3 appears in
any graph on six vertices or its complement as a subgraph.

While determining particular Ramsey numbers for r ≥ 6 exactly
is certainly not an easy task, the real challenge here is to understand
their asymptotic behaviour. The known proofs give an exponential
upper bound of the order 22r. The best known lower bounds are based
on randomly constructed graphs, and are of the order of magnitude
2r/2.

Open Question 3.1. Can you find accurate asymptotic upper and
lower bounds for the Ramsey numbers R(r)?

More precisely5, determine a constant c such that R(r) = Θ(2c·r).

By the above, we know that 1
2 ≤ c ≤ 2. Combining results of

Spencer [87] and Conlon [20] gives the best known bounds to date:

[1 + o(1)]

√
2r

e
2

r
2 ≤ R(r) ≤ r−(c log r)/(log log r)4r

It seems that in order to improve the bounds for c fundamentally
new ideas are required. Interestingly, as soon as we assume some struc-

5Given functions f and g, we write g = θ(f) as a shorthand for: there are constants a
and b such that a · f ≤ g ≤ b · f .
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ture for the graphs in which we seek to determine c, it is possible to
prove upper bounds that are much lower.

For example, in the simplified Ramsey problem for triangle-free
graphs much better quantitative bounds are known; see recent work of
Bohman and Keevash [8] and Ajtai, Komlós and Szemerédi [5].

A useful strengthening of the notion of a subgraph is that of an
induced subgraph: a graph obtained from another graph by deleting
some of its vertices, and all their incident edges. Given a graph H, we
denote by FH the class of graphs with no induced subgraph isomorphic
to H. While random graphs have fairly large Ramsey numbers, as
mentioned above, Erdős and Hajnal conjectured that in any class FH
– which cannot contain large random graphs, in the sense that those
contain every fixed H with probability tending to 1 as their size grows –
Ramsey numbers restricted to that class are reasonably small:

Conjecture 3.2 (Erdős-Hajnal Conjecture 1989). For all graphs H,
there exists a constant δH > 0 such that the n-vertex graphs in FH
contain either a complete graph, or its complement, of size Ω(nδH ) as
an induced subgraph.

While there are a few theorems proving this conjecture for partic-
ular graphs H, this conjecture remains widely open; see Chudnowski’s
survey [15] for details.

Probabilistic Method. There are many beautiful conjectures out
there that only have one little problem: they are not true. And we all
know that sometimes it can be hard to find a construction for a coun-
terexample. The ‘Probabilistic Method’ provides a systematic way to
produce counterexamples: rather than constructing a concrete coun-
terexample explicitly, one proves that they occur with some positive
probability and hence must exist. Over the years this method has been
applied successfully to a large class of problems in combinatorics.

Let us start at the beginning, with a conjecture that is just too
beautiful to be true. A colouring of a graph is an assignment of colours
to its vertices such that adjacent vertices receive different colours. The
chromatic number of a graph is the least number of colours required.
For example, the complete graph Kr has chromatic number r, while
trees – that is, connected graphs without cycles – have chromatic num-
ber two (to see this, pick a vertex of the tree, call it the root, and
assign one colour to all vertices of even distance from the root and
the other colour to the vertices of odd distance). Above we discussed
the 4-Colour Theorem, which says that planar graphs have chromatic
number at most four.

Assume our task is to colour a huge graph with a small number
of colours and we are given colourings with just two colours of all
connected subgraphs of some bounded size. One might imagine that
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there would be a ‘local-global principle’ allowing us to stick together
the local colourings of the bounded-sized graphs to produce a global
colouring with two colours – or perhaps, allowing for a small slack, with
boundedly many colours, see Figure 11. In 1959 Erdős showed that
such a strategy cannot work, by proving probabilistically the existence
of a large class of counterexamples. He showed that for any number
k, there are graphs of chromatic number k such that all connected
subgraphs on at most k vertices are trees. Put another way, local 2-
colourings of graphs cannot always be combined to global colourings
with just boundedly many colours.

Figure 11: Although every path can be coloured by alternating between two
colours, cycles of odd lengths cannot be coloured using only two colours.
They are the simplest examples of graphs where local reasons alone do not
determine the chromatic number.

How do we randomly generate such a graph? In the simplest
(Erdős-Renyi) model, we start with a set of n vertices and put in
each possible edge with the same probability p – which may depend on
n. With some abuse of terminology, we then say that a random graph
has a particular property if the measure of the set of n-vertex graphs
with that property in the resulting probability space G(n, p) tends to
1 as n tends to infinity, see Figure 12.

We can thus estimate probabilities for events like ‘containing no
cycle of length at most k’, or of ‘having chromatic number at least
k’. If both these probabilities were greater than one-half, then the
existence of a graph with both properties is proved: the existence of a
graph that is locally 2-colourable (because it contains no ‘short’ cycles)
yet needs many (> k) colours globally. Unfortunately, in reality things
are slightly more complicated; see [23] for the easy but beautiful details.

In our examples the probabilistic method was introduced to con-
struct graphs with two properties simultaneously. In 1973, more than
twenty years after the probabilistic method had been introduced to
graph theory, Erdős and Lovász initiated a more systematic study of
probabilistic constructions in combinatorics, as follows.

The Chernoff bound from Probability Theory is a commonly used
tool to control the joint distribution of many random variables – as
long as they are independent. However, in many potential applica-
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Figure 12: A graph on n = 50 vertices generated in such a way that every
edge was added with probability p = 1

2 (Source: [82]). It is unlikely that two
graphs generated independently in this way are isomorphic. In contrast to
this, any two random graphs on a countably infinite vertex set are isomorphic
with probability one [1, 29, 71].

tions in graph theory, we would like to control lots of events but they
are not all independent. Still most of the pairs of these events are
independent. In this situation, Erdős and Lovász decided to encode
this information about the dependencies in a graph, and study which
structural property of this dependency graph allow for a solution to all
the constraints given by the events. More precisely, the Lovász Local
Lemma says that given a family of events such that their dependency
graph has maximum degree d and all these events occur with proba-
bility at most p such that ep(d+ 1) ≤ 1 (where e = 2.7182..), there is
a positive probability that none of these events occurs.

For example, initially with the probabilistic method one was able
to prove only the non-existence of a colouring with few colours, in
contrast to this the Lovász Local Lemma can be used to prove the
existence of such a colouring, significantly expanding the potential ap-
plications. In a nutshell, the probabilistic method grew from a useful
tool to construct counterexamples to persistent conjectures, through
Lovász’ contributions, to one of the key construction methods in the
area of Probabilistic Algorithms. While new applications of the Lovász
Local Lemma are still being discovered today, Moser and Tardos found
a constructive version of the Lovász Local Lemma in 2010 [62, 63].

Limits of graphs. Given that many theorems in graph theory
are asymptotic in nature, it is a natural step to study these problems
through a suitable limit object. Asymptotic problems for dense graph
classes – classes consisting of graphs whose number of edges is a con-
stant fraction of all possible edges – are quite often studied through
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graphons, which are symmetric measurable functions from the unit
square to the unit interval. Indeed, finite graphs can be represented by
the following graphons W : partition the unit interval into equally sized
segments Iv, one for each vertex v. Now define the graphon W (x, y)
to be one if there is an edge between the vertices v and w satisfying
x ∈ Iv and y ∈ Iw, and zero otherwise. Another example of a graphon
is given in Figure 13.

Figure 13: A graphon is a function from the unit square to the unit interval.
We draw them as a unit square, whose points are coloured black if they
attain the value 1, white if they attain the value zero, and various shades
of grey for all values in between. The graphon here represents the class of
graphs that can be partitioned into two equally sized vertex sets such that
all edges between them are present. In one of these vertex sets no edge is
present. The other vertex set can be partitioned into two independent sets
such that an edge between these sets is present with probability one half.

Given a sequence of finite graphs, represented by graphons taking
only the values zero and one, there is a suitable notion of a limit
graphon, similar as the example of Figure 13, whose values repre-
sent densities from the unit interval obtained by averaging out vertex-
adjacencies, roughly speaking; see the foundational book of Lovász [56]
for details.

This way a whole class of graphs can be represented by a single
graphon. For example, the graphon that takes constantly the value 1

2
represents the class of Erdős-Renyi random graphs, where edges are
drawn with probability 1

2 . Graph parameters such as edge densities
or numbers of triangles can be interpreted as integrals over graphons.
This allows us to translate many problems from extremal graph theory
into inequalities over multidimensional real-valued integrals.

This topological construction of graphons as limits is accompanied
by algebraic constructions, see the flag algebra calculus of Razborov
[73]. In some cases the automatisation of extremal problems through
limits is at a level that parts of the problem solving can be done through
computer search [74]. The theory of graphons is closely related to Sze-
merédi’s regularity lemma. For example, in this language the regularity
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lemma can be restated in the form that every arbitrary large graph can
be approximated (in a suitably quantified way) by a graphon given by a
partition of the unit square into boundedly many equally sized squares
that is constant on all these partition classes.

Within this framework of graph limits, in 2016 Reiher proved his
clique-density theorem, a far-reaching extension of Turán’s classical
theorem, which for every natural number r determines the minimal
number of complete graphs on r vertices that are contained in any
graph with a given edge density [75]. This solved a conjecture of Lovász
and Simonovits from the 1970s and extended earlier results of Razborov
and Nikiforov. An important conjecture in this area that remains is
the following. Given a graph H and a graph G, denote by t(H,G), the
‘homomorphism density of H in G’ – up to some low-order terms this
is equal to the probability that if we pick a set of |V (H)| vertices of G
at random that the subgraph of G spanned by these vertices has the
graph H as a subgraph.

Conjecture 3.3 (Sidorenko 1986 [86]). For any bipartite graph H and
every graph G we have that:

t(H,G) ≥ t(K2, G)|E(H)|

Informally, this conjecture says that in every graph G, the edge-
density t(K2, G) can be used lower-bound densities of arbitrary bi-
partite graphs H in the most natural way. In additional to his foun-
dational contributions to the development of the theory of graphons,
Lovász asked questions about them with the aim to determine the po-
tential and boundaries of this approach, quite a few of them have been
answered recently by Král

,
et al [22, 39].

The theory of dense graphs can be used to solve problems in all
types of areas, for example it can be applied in number theory to
study arithmetic progressions in random subsets of the integers; see
for example the works of Schacht [80] and Conlon and Gowers [21].

While the methods of graphons and flag algebras are tailored to
dense classes of graphs, a theory of limits for sparser classes of graphs
has not been fully developed yet [50].

Open Question 3.4. Can you develop a theory of limits of sparse
graphs that provides a systematic framework to study a great variety of
asymptotic questions on sparse graphs?

One hope of such a theory of sparse graphs would be that it might
provide tools to study Gromov’s question whether all finitely presented
groups are sofic [37] through the Aldous-Lyons Conjecture [6], see [41].
For the emerging theory of sparse graphs see the book of Nešetřil and
Ossana de Mendez [68]. The subfield of Structural Graph Theory that
traditionally deals with problems of limits of graphs is called Infinite
Graph Theory, which we explore in a separate paragraph below.
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4 Highlights in Structural Graph Theory

Matchings, Packings and Coverings in Graphs. Graph
theory is a fairly young mathematical discipline, many of whose foun-
dational results were proved in the 1930s and 1940s. Now it has reached
a stage with an abundance of applications in science and connections
to other areas of mathematics, where its theorems accumulate and
greater patterns between the theorems are recognised. Let me try to
illustrate this by explaining four theorems answering four seemingly
very different problems, and their common unification.

(a) There cannot be more
than two paths from left to
right as all such paths need
to traverse the 2-separator,
highlighted in grey.

(b) The edge
set of the
graph K4 can
be covered by
two paths of
length three;
this covering
happens to
be also a
packing.

(c) The com-
plete bipartite
graph K2,3

has a match-
ing of size 2;
one such is
highlighted in
red.

Figure 14: Examples related to (a) Menger’s Theorem, (b) the Covering
Theorem and (c) the Marriage Theorem, all special cases of the Packing
Covering Theorem.

Firstly, given a graph G together with two vertex sets A and B,
what is the largest size of a set of vertex-disjoint paths from A to B?
In 1927 Menger answered this question by proving that the largest
cardinality of a set of vertex-disjoint paths from A to B is equal to the
minimum size of a vertex set whose removal separates A from B [59];
note that it clearly cannot be larger, see Figure 14a.

Secondly, given a graph G, how many subtrees of G are necessary
to cover all its edges? Note that when covering the edges of a (con-
nected) graph with trees, we may as well assume that each of these
trees contains all vertices of the graph; that is, it is a spanning tree. In
1964 Nash-Williams [65] answered that question by proving that the
minimum number of trees necessary is no larger than the maximum
local density of the graph – the largest ratio of the edges over vertices
in any subgraph and which clearly is a lower bound since in trees this
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number is less than 1, see Figure 14b.
Thirdly, given a connected graph, what is the maximum number

of pairwise edge-disjoint spanning trees? Nash-Williams and Tutte
[64, 91] answered this question by proving that this number is equal
to the minimum local density of a contraction minor6 (that is, a minor
obtained by only contracting edges).

Fourth, in a small village, what is the maximum number of mar-
riages that can be arranged between men and women, given a graph
encoding the possible matchings? Formally, we are given a bipartite
graph, a graph whose vertex set is partitioned into two classes such that
all edges go between these classes; and we are interested in finding a set
of vertex-disjoint7 edges – such a set of edges is called a matching. In
1931 Kőnig answered this question by proving that the maximum size
of a matching is equal to the minimum size of a vertex set covering all
edges, see Figure 14c. Independently in 1935, Hall proved an equiv-
alent result, which has been popularised as the ‘Marriage Theorem’.
Most certainly it was clear at that time that matchings have numerous
applications outside mathematics, for example in scheduling problems.
An application within mathematics is a short combinatorial proof of
the Cantor-Schröder-Bernstein Theorem in set theory. For details on
the theory of matchings, we refer to the book of Lovász and Plummer
[57].

Despite their differences, all these four theorems have the following
unification [9, 23]. Given a graph G and a natural number k, its edge
set can be partitioned into a set P and a set C satisfying the following:

� the graph G�P – the subgraph of G obtained by deleting the
edges outside P – has k edge-disjoint spanning trees in each of
its connected components. The edge set P is referred to as a
packing ;

� the graph Gi.C – the minor obtained from G by contracting the
edges outside C – has a covering of its edge set by k trees. The
edge set C is referred to as a covering.

Informally speaking, this theorem says that the edge set of any graph
can be partitioned into a dense part, which admits a packing, and a
sparse part that admits a covering. The Packing-Covering Theorem is
the natural generalisation of this statement where one takes k matroids
sharing a common ground set instead of a single graph G. While
the reductions of the above four theorems from the Packing-Covering
Theorem are automatic once we specify to which family of graphs
(or matroids) we apply this theorem, the choice of a suitable family
requires a little bit of thought.

6There is a variant of this theorem with ‘contraction minor’ replaced by ‘quotient’ [23].
These two versions are clearly equivalent.

7We say that a set of edges is vertex-disjoint if no two edges in that set share a vertex.
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Quite often in graph theory, people only consider finite graphs – it
is the convention to always assume that graphs are finite unless stated
explicitly that they are infinite. In the Packing-Covering Theorem
allowing the set E to be infinite, one obtains the Packing-Covering
Conjecture [9], which is still open; important special cases of this con-
jecture include the Aharoni-Berger Theorem from 2009 [4], which is
an infinite analogue of Menger’s Theorem conjectured by Erdős in the
1960s, and it is a far-reaching extension of the Infinite Hall Theorem
of Aharoni, Nash-Williams and Shelah from the 1980s. Quite recently
Joó [45] made a big advance on the Packing-Covering Conjecture.

In its most general form, the Packing Covering Theorem is equiv-
alent to the Matroid Intersection Theorem. This theorem expresses
these ideas in terms of submodular rank functions; here a function
f from the power set 2E of a set E to the reals is submodular if
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ E. The Lovász

extension of a function f from 2E to the reals is the function f̂ from
the unit cube [0, 1]E to the reals given by f̂(x) = E[f(xλ)], where the
expectation is taken over the parameter λ ∈ [0, 1] and xλ is the bi-
nary vector that has a one in all coordinates where x has a value of
at least λ [54]. This construction is designed so that the function f is

submodular if and only if its extension f̂ is convex. This established
an important link with optimisation, allowing us to derive integral so-
lutions for a large class of graph-theoretic problems through fractional
relaxations thereof [38]. Another connection with the related field of
Combinatorial Optimisation is described in the paragraph on perfect
graphs below.

Figure 15: The fano plane is a Steiner-system with parameters (7, 3, 2); here
a Steiner-system with parameters (n, q, r) is a set S of q-subsets of an n-
set X, such that every r-subset of X belongs to exactly one element of S.
Steiner-systems have applications in error-correcting codes.

While the Packing-Covering Theorem gives us a good understand-
ing of how to pack spanning trees in graphs, it is natural to try to pack
other graphs. In Design Theory, we are given a large host graph G
and a small graph F . The task is to partition the edge set of G into
graphs all isomorphic to F . For simplicity we assume here that all the
vertices of G and F have the same number of neighbours, and denote
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these numbers by d(G) and d(F ), respectively. For such a partition
of the edge set G to exist, it is necessary that d(F ) divides d(G), and
that the number of edges of F divides the number of edges of G. In
this case we say that G is F -divisible. In 1853 Steiner conjectured that
if G and F are both complete graphs such that G is F -divisible and G
and F are sufficiently large, then the edge set of G can be partitioned
into copies of F . In 2014 Keevash [47] announced a proof of this con-
jecture (in a more general form including Steiner triples, see Figure 15
for details), which is widely believed to be correct though still under
review. For general graphs this problem is widely open:

Conjecture 4.1 (Nash-Williams 1970 [66], generalised by Gustavsson
[40] beyond the case r=3). For every r ≥ 3, there exists a constant
n0 = n0(r) such that every Kr-divisible graph G with n ≥ n0(r) vertices
such that every vertex has at least (1 − 1

r+1 ) · n neighbours admits a
partition of its edge set into graphs all isomorphic to Kr.

See [36] by Glock, Kühn, Lo, Montgomery and Osthus for recent
progress towards this conjecture.

Graph Minor Theory. Graph Minor Theory sits at the interface
of topology and graph theory, with many algorithmic applications. An
important aspect is the connection between embeddings of graphs in
2-dimensional surfaces and the minor relation. The discovery of this
connection began in the 1930s when the pioneers Wagner, Kuratowski
and Whitney characterised embeddability of graphs in the plane by
completely combinatorial conditions [94, 51, 95] and this connection
provided crucial tools for the proof of the Robertson–Seymour Theo-
rem [77] in 2004, which is often regarded as the deepest theorem of
combinatorics today. On one hand, the class of graphs embeddable
in a fixed surface is closed under taking minors. This means that,
like for Kuratowski’s Theorem, embeddability in a fixed surface can
be characterised through the minor relation in terms of a list of mini-
mal graphs that do not embed; such graphs are called excluded minors.
The Robertson-Seymour theorem says that this list of excluded minors
is finite for every minor-closed class of graphs. On the other hand,
Robertson’s and Seymour’s structure theorem provides a topological
construction for every minor-closed class of graphs; drastically over-
simplifying, this theorem says that any minor-closed class of graphs
can be built from classes of graphs embedded in a fixed surface by
sticking them together in a tree-like way, see Figure 16.

This theoretical breakthrough demonstrates the potential of the
minor-theoretic approach. Still it seems like we are very much at the
beginning of constructing Minor Theory, as the current machinery can-
not be used to derive quite a few seemingly natural applications. For
example, while Mohar proved that there is a linear time algorithm that
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Figure 16: A graph embedded in the torus. This embedding induces a
toridal embedding of every minor of this graph.

verifies embeddability in a fixed surface [61, 46] and the Robertson-
Seymour theorem predicts that the class of graphs embeddable in a
fixed surface is characterised by a finite list of excluded minors, com-
puting this list explicitly for a fixed surface is a challenge – even for
the simple surface of the torus this list is not known! Another example
is Negami’s Conjecture on coverings of planar graphs from 1988 [67].
For Hadwiger’s Conjecture see the paragraph on ‘Graph Colouring’.

The spectral theorist Colin de Verdière, introduced the parameter
µ(G). It originated from the study of the maximum multiplicity of
the second eigenvalue of certain Schrödinger operators on Riemann
surfaces [93]. A discretisation led to a graph-theoretic description of
this quantity. Very roughly, µ(G) is the largest co-rank of a class
of generalised adjacency matrices satisfying a certain linear algebra
property called the ‘Strong Arnol’d Property’. While this definition is
purely given in terms of linear algebra, it can be shown that the class
of graphs with µ(G) ≤ c for some constant c is closed under taking
minors. So by the Robertson-Seymour Theorem the condition that
‘µ(G) ≤ c’ can be characterised by finitely many excluded minors and
the structure theorem suggests that this class can be characterised in
topological terms. For small values of c it has been shown that this
is indeed the case, for example for c = 3 the class of graphs G with
µ(G) ≤ c is equal to the class of planar graphs, while for c = 4 this
class is the class of linklessly embeddable graphs. For c = 5 so far there
is only a conjecture. We say that a graph G is 4-flat if the 2-complex
obtained from G by gluing a disc onto each of its cycles is embeddable
in 4-dimensional space (in a piece-wise linear way).

Conjecture 4.2 (Van der Holst 2006 [92]). A graph is 4-flat if and
only if µ(G) ≤ 5.

There are quite a few areas of Graph Minor Theory, where ex-
citing new structural methods are being developed. For example,
the dichotomy between tree-structure and highly connected clusters
led to the Tangle-Tree Theorem, the Cops-and-Robbers Theorem, the
Branch Width Theorem, and the Grid Theorem. The Grid Theorem
[26] roughly says that for every number n there is a number t such
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that every graph can be constructed from graphs of size at most t by
gluing them together along a tree or it has a 2-dimensional n× n grid
as a minor. Of particular interest in this dichotomy result between
tree-structure and grid minors is the dependence between the parame-
ters n and t; recently it was proved by Chuzhoy et al [14, 19] that this
dependence is polynomial.

A central aim in network theory is to identify ‘clusters’; that is,
somewhat highly connected regions in networks. While clusters them-
selves are usually ‘fuzzy’ in the sense that it is hard to decide where
they have their boundary exactly, this does not mean that they must
have a fuzzy definition. One type of such clusters are tangles, which
obey a precise mathematical axiomatisation and are key in Robert-
son’s and Seymour’s proof of their structure theorem to detect large
grid minors. Diestel et al developed a systematic theory of tangles [24]
that can also be applied in areas outside Structural Graph Theory such
as image recognition [28, 25, 27].

Finally, there are ideas – at various stages – to extend the theory
beyond graphs. These include extensions to other natural relations on
graphs such as vertex minors and pivot minors by Oum et al [69, 34, 48],
extensions to directed graphs by Archontia, Kawarabayashi, Kreutzer
and Kwon [35], extensions to 2-dimensional simplicial complexes (see
the paragraph on ‘Topological Graph Theory’ for details) and exten-
sions to matroids, as follows.

Like the abstraction that came with a base point free axiomati-
sation of vector spaces deepened our understanding of linear algebra,
matroids can be thought of as a ‘vertex-free’ abstraction of graphs.
Matroids are fairly general objects which provide a unified way to
understand cycles in graphs and linear dependences in vector spaces,
which also captures more complicated algebraic constructions like those
coming from field extensions [70]. An exciting conjecture in this area
is Rota’s basis conjecture (not to be confused with Rota’s Well-quasi-
ordering conjecture mentioned below); for an approach through ex-
tremal combinatorics, see [11] authored by Bucić, Kwan, Pokrovskiy
and Sudakov.

Geelen, Gerards and Whittle announced their proof of Rota’s Well-
quasi-ordering conjecture [31], a far-reaching extension of the Robertson-
Seymour Theorem from graphs to matroids representable over finite
fields – which can be thought of as a well-quasi ordering result for
matrices over a fixed finite field, roughly speaking. Matroid Minor
Theory is emerging as a research area of its own, which can be applied
in coding theory as well as extremal matroid theory, see for example
the growth rate theorem for matroids by Geelen and Nelson [33, 32].

Graph Colouring. In Graph Colouring we study the chromatic
number and related graph parameters, for example fractional relax-

20



ations thereof and inductive strengthenings like list-colourings as well
as flows, which can be understood for plane graphs through the chro-
matic number of their plane dual, see Figure 17. While the proof of
the 4-Colour Theorem in the 1970s resolved a long standing conjecture,
during these investigations lots of related questions were asked, some
of which go far beyond the 4-Colour Theorem and motivate a lot of
research in the field of Graph Colouring till today. Examples include
Thomassen’s theorem that planar graphs are 5-list colourable [89] or
Tutte’s flow conjectures [23].
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1
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Figure 17: The vertices of the black graph K4 are assigned colours from
the set {0, 1, 2, 3}. The dual graph, which is also a K4, is drawn in red.
The colouring of the black K4 induces a flow on the red K4, as follows.
Each red directed edge crosses a unique black edge. It is assigned the value
of the left endvertex of that edge minus the value of the right endvertex
of that edge, viewed from the crossing point in the direction of the red
edge. This is a flow on the red graph as the amount flowing into each red
vertex is equal to the amount flowing out of it. Tutte’s duality theorem
formalises a duality between colourings of plane graphs and flows in their
duals. Through this duality, the 4-Colour Theorem can be restated as a
theorem about the existence of certain flows in plane graphs. Tutte made
various related conjectures about flows in graphs.

Amongst such questions, Hadwiger’s conjecture – which seeks for
a structural understanding of the chromatic number – has probably
attracted the most attention. This development began in 1937 when
Wagner proved that the 4-Colour Conjecture is equivalent to the state-
ment a graph with no K5-minor is 4-colourable [94], de-topologising the
4-Colour Conjecture. Inspired by this, Hadwiger made the following
bold conjecture:

Conjecture 4.3. (Hadwiger 1943) For all t ≥ 0, every graph of chro-
matic number t has a complete graph Kt as a minor.

In 1993, Robertson, Seymour and Thomas proved the case t = 5

21



[76]. While this conjecture certainly belongs in the area of Structural
Graph Theory, a hot topic are quantitative relaxations of this conjec-
ture; so proving statements of the form, chromatic number f(t) implies
a Kt-minor with the goal to eventually prove such a result for the func-
tion f(t) = t. See Seymour’s survey [85] for details.

Perfect Graphs. Quite a few important theorems in combina-
torics can be stated in a min-max form; usually such theorems in-
volve two parameters one of which is clearly bounded by the other,
and the theorem says that these two parameters are equal. For exam-
ple, Berge observed that in complements of bipartite graphs – that is,
graphs whose vertex set can be partitioned into two complete graphs,
the chromatic number is always equal to the clique number, the largest
size of a complete subgraph. While the clique number is an obvious
lower bound for the chromatic number, in the paragraph on the ‘Prob-
abilistic Method’ we explained that in general the chromatic number
can be much larger than the clique number. So Berge’s observation is
an example of a min-max theorem.

Many min-max theorems can be proved through the duality the-
orem of linear programming; in such cases one of the parameters is
determined by a linear maximisation problem and the other parame-
ter can be described by the dual minimisation problem. In fact, Berge’s
observation is of this form. There are many classes of graphs that allow
for a min-max relation between clique number and chromatic number.
In the 1960s Berge began to systematically study these classes.

Figure 18: The complement of the 7-cycle. This graph has no K4-subgraph,
yet it is not 3-colourable. So this graph is not perfect.

Recall that an induced subgraph of a graph G is obtained by deleting
a set of vertices and those edges with at least one endvertex in that set.
We say that a graph G is perfect if in each of its induced subgraphs,
the clique number is equal to the chromatic number, see Figure 18. For
example, complements of bipartite graphs are perfect but also bipartite
graphs themselves are perfect, as are chordal graphs – graphs such that
all induced cycles have length three. Put another way, the class of
perfect graphs is the class of those graphs such that they and all their
induced subgraphs satisfy a min-max relation between clique number
and chromatic number.
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While min-max theorems tend to have connections with the duality
theorem of linear programming, it is a priori not clear that the class
of perfect graphs has pleasant algorithmic (or structural) properties.
The theory of perfect graphs today answers the following questions.
Is there a natural characterisation of the class of perfect graphs in
terms of induced subgraphs? In view of the fact that determining
the chromatic number of a graph is an NP-hard problem, is there a
polynomial algorithm for perfect graphs? Can we recognise a perfect
graph in polynomial time?

Recall that the complement of a graph G is obtained by flipping the
adjacency between vertices; that is, the complement of G is a graph
with the same vertex set where two vertices are adjacent if and only
if they are not adjacent in G. Proving a conjecture of Berge in 1972,
Lovász proved that a graph is perfect if and only if its complement is
perfect. Given that the definition of perfect graphs is not symmetric
under complementation, this may come as a surprise.

In [38], Grötschel, Lovász and Schrijver constructed a polynomial
algorithm to determine the chromatic number of perfect graphs, as fol-
lows. In view of the fact that determining the chromatic number or the
clique number are NP-hard problems for the class of all graphs, this
is just another possibly unexpected aspect of perfect graphs. The key
to this algorithm is the Lovász number8 θ(G) [53]. Lovász carefully
designed this geometric graph parameter so that it is essentially ‘sand-
wiched’ between the clique number ω(G) and the chromatic number
χ(G); in formulas ω(G) ≤ θ(G) ≤ χ(G), where G is the complement
of G. So for perfect graphs, the chromatic number can be computed
through the Lovász number of the complement graph. One of the
cornerstone results in Combinatorial Optimisation is the fact that the
Lovász number can be computed through a semi-definite program, pro-
viding a polynomial algorithm to determine the chromatic number of
perfect graphs.

Simple examples of graphs that are not perfect are cycles of odd
length greater than three – and their complements. In 2006, Chud-
novsky, Robertson, Seymour, and Thomas showed that these graphs
actually characterise the class of perfect graphs, by showing that a
graph is perfect if and only if neither it nor its complement contains
an odd cycle of length at least five as an induced subgraph [18]. This is
a far-reaching extension of Lovász’ theorem that complements of per-
fect graphs are perfect, and settles a conjecture of Berge. As part of
this proof, the authors developed a structural decomposition theory for
perfect graphs, which in turn was applied by Chudnovsky, Cornuéjols,
Liu, Seymour and Vušković to construct a polynomial recognition al-
gorithm for perfect graphs [16]. It is remarkable that so far it is still

8Sometimes the Lovász number is also called the Lovász theta-function.
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open to find a way how to use these decomposition tools to find a
combinatorial algorithm to compute the chromatic number of perfect
graphs; see [17] for recent progress in this direction.

Motivated by these successes, in recent years there was a significant
interest in understanding graph classes where clique number and chro-
matic number are not necessarily equal but at least close in a quantified
sense. A central conjecture in this area is the following.

Conjecture 4.4. (Gyárfás–Sumner 1975) For every tree T and natu-
ral number r, there is a constant c such that every graph either contains
T as an induced subgraph, or contains the complete graph Kr as an in-
duced subgraph, or has chromatic number at most c.

If true, this conjecture would nicely complement the theorem that
there are graphs of large chromatic number such that all bounded-
size connected subgraphs are trees, discussed in the paragraph on the
‘Probabilistic Method’. In fact this would be a local-global principle for
the chromatic number after all. For details, see the survey by Seymour
and Scott [83].

Infinite Graph Theory. Recent breakthroughs in this area in-
clude the proof of the Erdős-Menger Conjecture by Aharoni and Berger
in 2009 [4], Diestel’s topological principle which lifts theorems about
finite graphs to topological statements about infinite graphs with ends,
which climaxed in the solution of Rado’s problem by providing crypto-
morphic axiomatisations of infinite matroids in terms of independent
sets, cases, circuits, hyperplanes and rank [10]; and the subsequent de-
velopment of a theory of infinite matroids by Bowler, Carmesin, Joó
and others. An important conjecture in Infinite Graph Theory is that
countable graphs are well-quasi ordered.

While there is no doubt that there is an abundance of natural chal-
lenges in the field of Infinite Graph Theory, I see the greatest potential
for its development in the next decades in questions that apply Infinite
Graph Theory in finite graphs.

Let me illustrate this by an example. Developments in science such
as parallel computing and large networks motivate the study of local
separators – vertex sets that separate graphs locally but not necessar-
ily globally [13]. More precisely, we are interested in small vertex sets
whose removal disconnected a subgraph of bounded radius, while out-
side that subgraph connections may still exist. The key idea in [13] is
to define these local separators as those vertex sets that lift to separa-
tors of a suitable cover; this way they inherit submodularity properties
and many structural decomposition theorems can be extended from
separators to local separators, see Figure 19.

There is a subtle, but important, difference to Diestel’s topological
principle. While Diestel’s principle builds exciting problems concerning
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Figure 19: A finite graph covered by an infinite graph. Local separators of
finite graphs can be defined through genuine separators of the cover; a local
separator and its lift are highlighted in grey.

infinite graphs out of finite graph theory, we go the other way: harness
the power of infinite graphs to study local behaviour in finite graphs.
There is much to explore in this direction, for example it connects to
Open Question 3.4 mentioned above in the paragraph on Graph Limits.

Topological Graph Theory. Above we have seen how the Prob-
abilistic Method can be used to prove the existence of graphs with
large chromatic number and large girth, and the 4-Colour Theorem
and Hadwiger’s Conjecture are concerned with bounding the chromatic
number for specific classes of graphs. Lovász developed a method go-
ing the other way round, employing algebraic topology to deduce that
certain graph classes have high chromatic number. One such class is
that of ‘Kneser-graphs’: given natural numbers n and k, the Kneser-
graph K(n, k) has as its vertex set all k-subsets of an n-element set,
where two vertices are adjacent if their sets are disjoint. M. Kneser
conjectured that K(n, k) has chromatic number exactly n− 2k+ 2 for
n ≥ 2k.

Example 4.5. The Kneser graphK(5, 2) is isomorphic to the Peterson-
graph, see Figure 1.

Lovász’ approach is based on the following construction. Given a
graph G, define the neighbourhood complex of G to be the simplicial
complex that has the same vertex set as G, whose simplicies are those
subsets that are contained in the neighbourhood of a single vertex of
G. Lovász [52] proved if the neighbourhood complex is k-connected
in the sense of homology theory, then the chromatic number of G is
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at least k − 1. An application is the proof of the above mentioned
conjecture of Kneser.

Since then a whole research area, usually referred to as Combina-
torial Algebraic Topology, has grown out of these ideas, for details we
refer to book of Kozlov [49], Babson and Kozlov [7] or Ziegler [98].
Aharoni and Berger extended these methods allowing them to study
many more graph parameters than just colourings [3], and this work in-
spired them to propose a matroidal strengthening of Ryser’s conjecture
[2].

In the 1930s Kuratowski, MacLane, Wagner and Whitney proved
various characterisations of the topological property of embeddability
of graphs in the plane through algebraic and combinatorial properties;
a linear algorithm for testing planarity was discovered by Hopcroft and
Tarjan [44] in 1974, and at the end of the 1970s several algorithms had
been published that construct plane embeddings in linear time, see
[58] for details. The higher dimensional analogue of this problem is to
embed 2-dimensional simplicial complex into 3-dimensional space, see
Figure 20.

Figure 20: The cone over K5. The fact that the graph K5 does not embed
in the plane lifts to the non-embeddability of the cone over K5 in 3-space.

In his survey article on Graph Minor Theory, Lovász asked whether
there is an analogue of graph minors in three dimensions. This was
answered by Carmesin in 2017, who characterised embeddability of
simply connected 2-dimensional simplicial complexes in 3-space in a
way analogous to Kuratowski’s characterisation of graph planarity, by
excluded minors. This characterisation also answered related questions
of Pardon and Wagner. A tool in the proof is Perelman’s Theorem
that any simply connected compact 3-manifold is isomorphic to the
3-sphere.

While Perelman’s Theorem is certainly a great advancement in
mathematics, the algorithmic aspects of the Poincaré Conjecture re-
main open: is there a polynomial time algorithm that tests isomorphy
with the 3-sphere for triangulated 3-manifolds? While existence of
some algorithm was proved by Rubinstein [90]9, Schleimer [81] strength-
ened this by showing that this problem lies in NP, and Zentner [97]

9See for example [81] for details on the history.
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showed that this problem lies in co-NP provided the generalised Rie-
mann Hypothesis. An equivalent combinatorial version is the following:

Open Question 4.6. Is there a polynomial algorithm that tests embed-
dability in 3-dimensional space for the class of 2-dimensional simplicial
complexes whose first homology group over the rationals is trivial?

Without the assumption on the homology group, de Mesmay, Rieck,
Sedgwick and Tancer [60] have shown that such a polynomial algorithm
cannot exist. In contrast to this, if we strengthen the assumption re-
quiring that the 2-complex is simply connected, the proof of Carmesin’s
Kuratowski Theorem gives a quadratic time algorithm [12]. This al-
gorithm relies on Perelman’s theorem. It would be desirable to have
a combinatorial proof of Perelman’s Theorem. Towards this goal Ru-
binstein, a pioneer in computational topology, asked the following.

Open Question 4.7 (Rubinstein [79]). Is there a robust notion of
discrete curvature that allows for a discrete analogue of Ricci flow?

5 Outlook

In this survey, we made an attempt to explain what graph theory is by
sketching some of its main lines of research. By doing so, we were forced
to omit many exciting developments in graph theory. For example,
an important problem at the interface of group theory, combinatorics
and computer science is the graph isomorphism problem, which asks
whether there is a polynomial time algorithm that decides whether two
given graphs are isomorphic. Despite Babai’s recent subexponential
time algorithm, it is not even known whether this problem is NP-hard.
The P 6= NP -Conjecture is another problem that we did not explain
here although there are many problems in graph theory that are known
to be NP-complete, for example deciding whether a graph has a cycle
that contains all its vertices [96].

6 László Lovász

In the past century, graph theory emerged as a new area of mathe-
matics. We explained some of its fundamental ideas, its diverse links
to other areas of mathematics, as well as today’s questions and chal-
lenges. Many of these challenges are foundational in nature and are
motivated by recent developments in science, intrinsic questions or link
to mysteries in other parts of mathematics. Today’s graph theorists
owe the privilege to work in this exciting area of research to the hard
work and deep insights of generations of graph theorists before. In
particular László Lovász played a key role through his inspiring ideas,
guiding the field. His main contributions include:
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� He played a leading role in the development of the Theory of
Graphons, which allow us to solve many problems of extremal
graph theory through this limit object. A prominent example is
the clique density theorem of Reiher, which had been conjectured
by Lovász and Simonovits a few decades before.

� The Lovász Local Lemma (LLL) revolutionised Probabilistic Com-
binatorics, and is a fundamental result in the area of randomised
algorithms.

� His topological methods to compute the chromatic number of
Kneser graphs were foundational to the field of Combinatorial
Algebraic Topology.

� Lovász developed sophisticated tools such as the Lovász Theta
function and the Lovász extension of submodular functions. These
connect to the ellipsoid method, a central result in optimization,
whose applications to combinatorial optimisation were developed
by Grötschel, Lovász and Schrijver.

� The Lovász Theta function connects Combinatorial Optimisation
with the theory of perfect graphs, to which Lovász also made
important contributions.

� He shaped mathematics as President of the International Mathe-
matical Union (2007-2010) and President of the Hungarian Academy
of Sciences (2014-2020).

� Beyond solving hard problems, he also wrote comprehensive text
books on cutting edge research areas making them accessible to
a much broader audience, for example his book ‘Large networks
and graph limits’ or the book on Matching Theory with Plummer.

� Lovász is known for his inspiring questions and conjectures. For
example his question on a 3-dimensional graph minor theory
is foundational to the development of 3-dimensional Combina-
torics. Another puzzle of his is the Erdős-Lovász-Faber con-
jecture, which has recently been proved by Kang, Kelly, Kühn,
Methuku and Osthus.

7 Further reading

Diestel’s textbook ‘Graph Theory ’ is an excellent introduction to the
topic, which also treats some of its advanced methods in later chapters.
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ramsey numbers. Journal of Combinatorial Theory, Series A,
29(3):354–360, 1980.

[6] David Aldous and Russell Lyons. Processes on unimodular ran-
dom networks. Electronic Journal of Probability, 12:1454–1508,
2007.

[7] Eric Babson and Dmitry N Kozlov. Proof of the Lovász conjecture.
Annals of Mathematics, pages 965–1007, 2007.

[8] Tom Bohman and Peter Keevash. The early evolution of the h-free
process. Inventiones mathematicae, 181(2):291–336, 2010.

[9] Nathan Bowler and Johannes Carmesin. Matroid intersection,
base packing and base covering for infinite matroids. Combina-
torica, 35(2):153–180, 2015.

[10] Henning Bruhn, Reinhard Diestel, Matthias Kriesell, Rudi Pen-
davingh, and Paul Wollan. Axioms for infinite matroids. Adv.
Math., 239:18–46, 2013.
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[67] Seiya Negami. The spherical genus and virtually planar graphs.
Discrete Mathematics, 70(2):159–168, 1988.
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